Traditional, iterative, and component-based development: A social ...
Robey, Daniel;Welke, Richard; Turk, Daniel

Information Technology and Management; Jan 2001; 2, 1; ProQuest

pg. 53

ﬁ‘ Information Technology and Management 2, 53-70, 2001
'* © 2001 Kluwer Academic Publishers. Printed in The Netherlands.

Traditional, Iterative, and Component-Based
Development:
A Social Analysis of Software Development Paradigms

DANIEL ROBEY * and RICHARD WELKE

Department of Computer Information Systems, P.O. Box 4015, Georgia State University,
Atlanta, GA 30302-4015, USA

DANIEL TURK
Colorado State University, USA

Abstract. Information systems have always been developed through social processes, wherein actors play-
ing a variety of specialized roles interact to produce new business applications of information technology.
As systems development practices continue to evolve, an ongoing assessment of their social implications is
required. This paper develops a framework for understanding the potential social implications of an emerg-
ing, component-based development paradigm. Like two alternative paradigms for systems development,
the traditional life-cycle and the iterative-incremental paradigms, the new component-based paradigm re-
quires that certain generic roles be performed to build a desired application. For each paradigm, we identify
the actors who play different roles, specify the nature of their interdependence, and indicate the require-
ments for managing conflicts constructively. The framework may guide research into the social dynamics
of system development and serve as a tentative guide to the management of information systems develop-
ment.

Key Words: software development paradigms, component-based development, software development
roles, social implications

1. Introduction

Information systems (IS) development is a social process that involves actors in
various interacting social roles [23,24]. While certain roles have become generic across
the range of development approaches that have evolved in practice, the particular mix
of actors varies with the development method used. The distinction between the user
and developer roles has been the primary focus of prior research (e.g., [3,21,36,37]).
Users are typically responsible for specifying information requirements, whereas devel-
opers retain responsibility for formal analysis, design, coding, testing, and maintenance.
Additional roles include managers, who are responsible for facilitating IS development
and allocating resources and attention to the overall process [47], and guarantors of the
applications developed [14,34]. Usually, different people perform each of these roles,

* Corresponding author. E-mail: drobey @gsu.edu.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

54 ROBEY, TURK AND WELKE

but sometimes individuals play multiple roles. Actors engaged in IS development may
be employed by the organization designing the system, or they may work for external
parties such as consulting firms, equipment and software vendors, or corporate part-
ners [47]. Thus, because of the diversity of actors and arrangements, IS development
remains essentially a social process.

IS development is assisted by methodologies and methods, which may affect the
interactions among actors. Dozens of methodologies are used today, and each spec-
ifies a sequence of steps or procedures for completing the process of system devel-
opment. Although methodologies are more commonly differentiated by some under-
lying technical feature, such as the degree of automation in code generation and the
extent of object-oriented programming, they also differ in their social implications.
By assigning responsibility for different activities and by indicating how roles are to
interact, development methodologies may bestow more power to certain roles while
diminishing others in importance [7,44]. For example, activities like requirements
analysis may call for systems analysts to conduct one-on-one interviews with users.
Other activities, such as structured walkthroughs, may occur in group meetings led
by analysts with users in attendance. Thus, in addition to imposing a technical dis-
cipline, formal development methodologies also shape the character of social interac-
tions.

All social processes are affected by the amount of role differentiation among actors
and the degree of interdependence among them [2,4,15,39]. Together, these variables in-
fluence the relationships among parties engaged in work, potentially affecting commu-
nication, power and conflict among participants. The effects of IS development method-
ologies on these behaviors during systems development can, in turn, potentially account
for some of the success or failure of development projects. Prior research has shown
the importance of communication to project success [18,53]. The frequency and types
of communication may vary, ranging from an honest and trusting partnership in one
situation to a defensive and error-prone relationship in another [13,49]. Prior research
has also focused on the management of conflict during systems development [3,41-43].
When used constructively, conflict can enhance system development outcomes by en-
couraging meaningful disagreement among participants. Where mismanaged, conflict
can become a destructive and demoralizing force [5].

In this paper we present a framework for studying and managing the social con-
sequences of alternative IS development methodologies. We begin by grouping devel-
opment methodologies into three paradigms for system development: the traditional
life-cycle paradigm, the iterative-incremental paradigm, and the emerging component-
based development paradigm. We distinguish these paradigms from each other on the
basis of four dimensions that describe their social implications rather than their tech-
nical requirements. We then relate these dimensions of development paradigms to the
social consequences of their use. Finally, we discuss the implications of our analysis for
managing the system development process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS 55

2. Systems development: methodologies and paradigms

Paradigms, methodologies, methods, and tools are nested concepts, as shown in
figure 1. Paradigm is used in this paper as a general concept that captures the general
characteristics shared by a group of methodologies. We consider methodology to mean
rules and specifications for conducting the overall process of IS development, includ-
ing rules for prioritizing and sequencing activities in the process. Some methodologies,
such as Martin’s Information Engineering [31-33] are described in great detail, while
others are described in less detail (e.g., RAD, Prototyping, SDLC), but each methodol-
ogy encompasses the overall process of software development. By contrast, we use the
term method to refer to analytic techniques used within a given methodology. Further-
more, methods may be executed with a variety of tools that consist of packaged software
applications.

The vast number of methodologies may be classified within two established par-
adigms. The traditional life-cycle paradigm is based on the assumption that proper ex-
ecution of each step will eliminate corrections later in the process and will thus result
in reduced overall costs. By contrast, the iterative-incremental paradigm assumes that it
is improbable to produce a correct system without the repetition of cycles and the close
interaction of users and developers contributing to the creation of an evolving system.

Recently, a third IS development paradigm has assumed prominence among IS
professionals and user communities [38,54]. The component-based development (CBD)
paradigm regards systems development as a user-centered activity in which component
brokers supply modules and utilities to the user who assumes responsibility for assembly,
testing, operation and maintenance. The CBD paradigm assumes that a knowledgeable
user community comprehends its own information needs, is able to obtain the required
components for building systems, and is competent enough to assemble these compo-
nents into useful and meaningful applications. Given the commercial availability of
high-level, “plug-and-play” components, users can develop and maintain their systems
with greater autonomy than permitted by the other two paradigms. Although the CBD
paradigm appears to bypass the historically difficult relationship between users and in-
house system professionals, it introduces new social relationships that may prove equally

Concept Definition

Paradigm Conceptually captures principles common to a group of
methodologies.

Methodology Defines the overall process for developing applications and
identifies the role of methods within the process.

Method Prescribes techniques that comprise a specific
methodology.

Tool Delivers software packages that implement specific
methods.

Figure 1. Nested relationship among IS development concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

56 ROBEY, TURK AND WELKE

problematic. In place of interdependence among roles housed within the same organi-
zation, the CBD paradigm brings users into greater contact with commercial suppliers
external to an organization. Navigating electronic markets creates new communication
needs and requires alternative methods for resolving conflicts among parties contributing
to IS development. In this paper, we seck an understanding of these social relationships
and their managerial implications.

3. Dimensions of IS development paradigms

The three paradigms for system development can be distinguished on the basis
of four analytical dimensions: linear—iterative, developer-centered—user-centered, new
development-reassembly, and structured—unstructured. The basic definitions of these
dimensions and their hypothesized effects are described below.

3.1. Linear—iterative

A linear development process is where each phase of development is completed and
approved before moving to the next phase. This sequential process does not provide for
returns to previous phases unless the whole process is commenced anew. The waterfall
model [40] is an extreme example of the linear approach. Just as water does not flow
uphill, neither are prior steps of IS development to be repeated. By contrast, an iterative
process is designed to include repetition so that work completed in an earlier cycle can
be refined and corrected. Interactive prototyping is an example of the iterative approach.

The primary effect of using linear methodologies is to enforce a sequential interde-
pendence among parties contributing to the development process. Sequential interdepen-
dence effectively limits parties’ participation to specific activities that occur after other
activities have been completed. By contrast, an iterative methodology brings parties into
reciprocal, team-like interaction wherein participants work together simultaneously. In
general, the more intense interpersonal interactions created in interactive methodologies
are likely to increase the opportunities for direct communication and also increase the
opportunity for conflict [41].

3.2. Developer-centered—user-centered

A developer-centered process is driven by developers, who structure and control
users’ activities. Although users may play essential roles in proposing and justifying
an IS project, and in specifying their information requirements, the process of develop-
ment is conducted under the assumption that the developer knows best. A user-centered
process, by contrast, elevates users to a more prominent role by giving them responsi-
bility for initiating, organizing, and structuring the work of developers and other con-
tributors [25]. In the user-centered approach, users and developers collaborate, each
contributing their own expertise to build software solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS 57

The primary implication of this dimension is for the distribution of power among
participants. Those who control the process are in a better position to rule on con-
troversial issues and to allocate resources in a manner that fulfills their objectives [7].
Developer-centered methodologies place developers in control and give them greater
power than their clients. By contrast, user-centered methodologies reverse this balance
of power and place users in control of development.

3.3. New development—assembly from reusable components

New development requires that applications be developed from “scratch”, building
software functionality from low-level source code. Assembly from reusable compo-
nents, by contrast, relies upon previously built components that are available either in
existing applications or commercially from external suppliers. For example, when an
application requires data to be sorted, the new development approach would direct a de-
veloper to write new code for the sort routine. Assembling the same application from
reusable components, however, would direct the developer to reuse a sort routine from
a library of existing components. Components for other functions, such as user inter-
faces, database storage and retrieval, or network connectivity, could also be acquired
from existing software sources.

The social effect of this dimension is to alter the dependence of users on devel-
opers. When relying upon system developers to produce original code, users become
more dependent upon them. Less dependence upon developers occurs when assembling
systems from available components.

3.4. Structured—unstructured

This dimension refers to the formality of the development process. Structured de-
velopment follows a specific plan, executed according to formal rules and methods, to
produce pre-defined deliverables. Unstructured methodologies follow a more sponta-
neous, ad hoc approach in which the development plan is adjusted based on knowledge
that is generated as the project proceeds. With an unstructured approach, products may
emerge at any time, not just as regularly scheduled deliverables. For example, whereas
a structured process may require user trials to follow formal testing, an unstructured
development process may generate working prototypes at any time.

The degree of structure in a development methodology potentially affects the power
relationship between users and developers. More structured methodologies favor devel-
opers by prescribing the rules for a complex social process. By contrast, unstructured
methodologies offer greater potential for balanced power relationships [7].

A development paradigm’s social profile may be portrayed by rating subjectively
its relative emphasis on each of these four dimensions. Figure 2 illustrates the social
profiles of all three development paradigms. The profiles shown illustrate the ideal, or
pure portraits of each paradigm. In reality, individual methodologies will vary from the
ideal and not exhibit the four dimensions to the extremes shown here. The ideal profiles
are used here to illustrate the key differences between the three paradigms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

58 ROBEY, TURK AND WELKE

4. Social analysis of three is development paradigms

In any social process, interactions occur among actors playing particular roles. In
IS development, many roles have become generic insofar as they appear in methodolo-
gies within all three development paradigms. Clearly, the roles of user and developer are
the focus of most inquiries into the system development process [36]. However, other
important roles can be identified. A manager role is responsible for identifying needs, al-
locating resources, monitoring progress, and making decisions affecting the scope of an
IS project and the needs it addresses [47]. Also, a guarantor role stands behind the sys-
tem’s performance, assuring its quality and suitability for the application [14,34]. While
in specific instances there may be additional roles, such as the project champion [6], or
more specialized versions of these roles (such as the project sponsor which is normally
a subset of the manager role), these four occur in most approaches to information sys-
tem development. The actors performing these generic roles vary from one paradigm
to another. For each paradigm, therefore, a table is provided summarizing the actors
associated with the four generic roles.

4.1. Traditional life cycle paradigm

The social profile for the traditional life-cycle paradigm is located at the far-left
side of the scale in figure 2. The traditional life-cycle paradigm follows a linear ap-
proach to systems development, proceeding through analysis, design, coding, testing,

Relative Emphasis
Linear 112|3|4(5|6]|7 lterative
L]
»
EBL
Developer-Centered b | User-Centered
o
: |
[]
New . Assembly from
Development e I Reusable
. I Components
®
Structured . Unstructured
Development M I Development
L]
Key:
—— Traditional
ee e e e 00 ee [ierative-Incremental
== == msm Component-Based

Figure 2. Social profiles for three IS development paradigms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS 59

and maintenance. The general rule in methodologies that follow the traditional life-cycle
paradigm is that the developer does not proceed to the next phase until the current one is
completed. The assumption underlying the traditional life-cycle approach is that proper
execution of earlier activities reduces the number of later corrections in the process and
thus reduces overall costs of development.

Traditional approaches tend to be developer-centered. Although users may initiate
requests for applications to be developed, developers control the development process.
Developers hold meetings to elicit requirements, they review specifications, conduct
testing, orchestrate walkthroughs, and so on. Users participate by providing information
and by certifying that the end product meets their functional requirements, but users are
peripheral to the design process itself. Development methodologies within the traditional
life-cycle paradigm are typically employed in the development of new systems. While
developers following this approach may have experience with many similar systems,
specific components and objects tend not to be reused. Designs, source code, libraries,
and other products developed for other systems tend to be reused only when they perform
identical functions in both applications. New features are developed by drawing from
developer experience, not the tangible residue of that experience.

Methodologies within the traditional life-cycle paradigm also tend to be structured
and formal. Because each phase must be approved before being handed off to the next
phase, it is especially important to devise formal procedures and standards for judging
acceptability at each phase. Structured methodologies accomplish this through formal
checklists and procedures.

Typical methodologies. One methodology that exemplifies the traditional approach is
structured analysis and design [19,55]. The defining characteristics of structured analy-
sis and design are thorough documentation, separation of logical design from physical
design, and graphic aids to support analysis and design decisions [40]. Data flow di-
agrams, data dictionaries, and functional decomposition are specific methods that em-
body these characteristics and that are central to methodologies in the traditional life-
cycle paradigm. Such methods allow system professionals to assess business operations,
document existing activities, model information flow and source materials, and create
diagrams and data dictionaries that show the essential operations of the organization.
These processes are performed at multiple levels of abstraction in order to obtain both
high- and low-level views of a business process.

Roles and interdependencies. Table 1 provides the role/actor matrix for the traditional
life-cycle paradigm. There are two predominant roles in the traditional approach: the
developer and the user. There are several IS professional actors who fill the developer
role: analyst, designer, and programmer. The analyst performs an assessment of the cur-
rent system, finding out what is currently being done and what is needed. The designer
creates a proposed solution based on current activities, current technology, future plans,
and organizational constraints. The programmer implements the design in a specific pro-
gramming language. End-users use the system interactively, or obtain information from
it in the form of reports, and provide information that becomes input for the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

60 ROBEY, TURK AND WELKE

Table 1
Actors and roles in the traditional life-cycle paradigm.

Actors Roles

Developer User Manager Guarantor

Analysts X

Designers X

Programmers X

End user X

User manager X X

IS manager X X

In addition, end users typically provide requested input as developers assess needs and
design new systems. User managers are responsible for the business area for which the
application is being developed.

The manager role is performed by both user managers and IS managers. User
managers allocate resources through charge-back payment systems and monitor the per-
formance of the system once it is in production. IS managers allocate human resources to
various projects and assume responsibility for project completion and budget adherence.

The developer holds the prominent role in the traditional life-cycle paradigm. Al-
though, the developer is dependent on the user to obtain information, the developer pro-
vides the structure for gathering information and avoids dependence by imposing a se-
quential order to the entire systems development process. As the person in charge of
the process and as possessor of the specialized knowledge of methods, the developer’s
dependence on the user is minimized. In traditional life-cycle development, users are
also dependent on developers for maintaining applications that the users need.

The four roles are distributed among different actors with very little overlap, thus
creating a high degree of specialization and need for coordination. The managerial role
affords the greatest overlapping, being shared by both IS managers and user managers,
and this creates ambiguity within the traditional life-cycle paradigm.

Conflict and its management. Conflicts between any two roles in an organization are
likely to occur when the roles are highly interdependent, where their responsibilities and
methods differ, and where they must accomplish work jointly under resource constraints
and time pressure [2,39]. These conditions clearly describe the traditional relationship
between users and IS professionals, and the traditional life-cycle paradigm has perse-
vered because it offers hope for controlling potential conflicts. With its highly structured
and sequential discipline, the life cycle attempts to regulate conflict by imposing rules
on the process, which theoretically reduces the potential for conflict because actors work
independently of each other.

Unfortunately, this kind of regulation only works where there are few deviations
from planned activities. In contrast to the implied assumption of few deviations, field
research on system development provides evidence that deviations are frequent, and that
project performance is often frustrated by dependence on a sequential plan [44]. When
deviations do occur, the traditional life-cycle paradigm proves to be remarkably inflexi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS 61

ble. Where conformity to traditional development methods is strictly enforced, conflicts
may simply be deferred until after implementation and then be manifested as resistance
to and/or unintended uses of the system [28,45].

4.2. Iterative-incremental paradigm

The second paradigm for system development is the iterative-incremental para-
digm. Methodologies within this paradigm are designed on the assumption that it is
possible to identify and meet system needs more accurately by continuously revisiting
requirements with users. Thus, system development is designed as an iterative process,
repeating various activities until design specifications are better understood and more
fully developed. Methodologies within the iterative-incremental paradigm are centered
neither the developer’s nor user’s camp. While developers may direct some activities,
developers and users assume joint responsibility for producing results.

Typical methodologies. Many iterative-incremental methodologies fit within an object-
oriented (OO) paradigm that focuses on software reuse, even though some new devel-
opment efforts are undertaken using the iterative-incremental approach [20,35]. Perhaps
the most general methodology is prototyping, which involves the construction of a model
of a system or object that contains only essential features [8,40]. Prototypes do not in-
clude all features of a system or an object, and they do not provide the level of accuracy
or performance that is expected with traditional life-cycle methodologies. Prototypes
are generally created quickly, and they provide timely feedback on the feasibility and
usefulness of an application’s design and specifications.

The spiral model [9] defines four major activities that are performed repeatedly
throughout the IS development process: planning, risk assessment, engineering, and
evaluation. Because not all of these activities are directly related to system develop-
ment, the spiral model is frequently considered to be a more general iterative process for
managing IS projects. However, because iterations recur within each main activity of the
spiral model, technical system development may be regarded as a recurring engineering
activity within the overall systems development process.

Object-oriented methodologies have come into vogue because they provide a valu-
able perspective on how the data and functions of a program fit together and how hierar-
chies of concepts may be used to model the real world more efficiently. OO methodolo-
gies generally fit within the iterative-incremental paradigm because they take advantage
of prototyping in the development process [11,12,46]. The OO approach focuses on
defining and categorizing real-world abstractions and modifying their computer repre-
sentations until they are detailed enough for implementation.

Roles and interdependencies. ~As shown in table 2, the developer role is expanded in
the iterative-incremental paradigm to include both traditional developers and users. De-
veloper and user are the two central roles in the iterative-incremental paradigm, but
users perform both of them. As in the traditional approach, users provide information
about needs, and developers perform actual design and development work. However,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

62 ROBEY, TURK AND WELKE

Table 2
Actors and roles in the iterative-incremental paradigm.

Actors Roles

Developer User Manager Guarantor

Analysts

Designers
Programmers
Consultant; integrator
End user

User manager

IS manager X X

R R Il

in the iterative-incremental methodolgies, actors work more closely to identify domain
abstractions and to create analysis documents that describe the functional characteristics
of the domain. This process is accomplished iteratively, with higher-level abstractions
evolving over time to become more detailed descriptions. While either developers or
users may be nominally in charge of the process, power is more balanced than in the
traditional life-cycle paradigm.

The interdependence between users and developers in the iterative approach is
reciprocal rather than sequential. Work and communication move back and forth as par-
ticipants rely upon each other to provide information and knowledge contributing to the
shared goal of understanding the domain and the system. Reciprocal interdependence
allows each party’s contribution to be on display as it is created. By approaching the
system development process with an assumption of mutual cooperation among equally
important roles, the iterative-incremental development process hopes to build systems
more effectively [10].

Conflict and its management. Unlike the traditional approach of reducing conflict
through carefully sequenced activities, the iterative paradigm actually increases the po-
tential for conflict by bringing actors closer together. With greater requirements to work
together, and with more equal power, actors may indeed create more conflict. However,
the hope is that such conflicts can be constructively managed by providing greater op-
portunity for open communication and mutual influence [41,42]. Project management
and leadership are key to the success of such development efforts, so many iterative
processes are led by facilitators skilled in both conflict management and in the methods
of system development [30,53].

4.3. Component-based development (CBD) paradigm

The CBD paradigm depends upon the availability of a wide variety of reliable
utilities and business-application components, which must be easily connected to create
and configure business applications, then recreated and reconfigured as business require-
ments change. Unlike objects, components are platform dependent, and thus concrete
enough to avoid the risks and problems of instantiating general objects on a particular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS 63

machine and within a specific application at the language level. Components supporting
user interface design, data storage and retrieval, and data communications are examples
of general utilities. Business-application components also include support for inventory
tracking, point-of-sale processing, and data analysis. Most component-based develop-
ment relies upon the use and reuse of objects available from independent component
suppliers.

Component-based development has become a very important topic in recent
years [29,38,52,54]. Evidence of this includes special issues of established journals
(e.g., [26]), the first component-base software conference in 1996 [27], many organiza-
tions instituting component technology development [1], and research groups focusing
on component development (e.g., the Department of Management Science and Statis-
tics at the University of Alabama, Tuscaloosa). The ready availability of commercial
component-based infrastructures (e.g., DCOM and CORBA) and plug-ins for software
such as Adobe Acrobat, Visual BASIC, and Netscape, have made component based de-
velopment become a reality.

Unlike the first two paradigms, which separate the developer and user roles, the
CBD paradigm typically has both roles played by users. Given the high-level functioning
of commercially available components, users can develop and maintain systems more
quickly and more effectively than could full-time system developers working through
a backlog of projects. The primary advantage of the CBD paradigm is that users may
combine their deep knowledge of an application domain with fairly limited technical
knowledge, yet still produce useful systems. The user can configure new applications
or modify existing ones when needed rather than waiting for a development team to
design an enhancement to an existing application. However, the CBD paradigm requires
that users interact directly with external providers of components and services, thereby
entering into market-based transactions that are quite different from their relationships
with in-house systems professionals.

Typical methodologies. Because the CBD paradigm has emerged as a user-led phe-
nomenon, little attention has been given to the use of formal methodologies. Rather, de-
velopment typically proceeds using visual programming and employs components with
high functionality. The responsibility for creating systems thus shifts to the user, who
must depend upon component suppliers and brokers. In turn, the suppliers and bro-
kers must deliver compatibility and functionality to the user-developer so that compo-
nents can be assembled into working applications. Suppliers must market components
that provide inventory control, text editing, Internet connectivity, and many other func-
tions, which can be plugged and played with other components acquired from disparate
sources. Prior to the emergence of the CBD paradigm, one might have obtained, at best,
so-called “structural support” components from external vendors (or an internal reuse
library) for B-tree indexing, screen layout, graphic display, sorting, or other lower-level
functions. Today, components have a very high degree of flexibility, generality, quality,
and reliability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

64 ROBEY, TURK AND WELKE

Table 3
Actors and roles in the component-based development paradigm.

Actors Roles

Developer User Manager Guarantor

Component supplier
Component broker
Architect

End user

User manager
Auditor

P Il
Pl

>

In the CBD paradigm, component suppliers are responsible only for pieces of the
final application while user-developers retain responsibility for assembly. This arrange-
ment poses potential difficulties in guaranteeing system performance and reliability.
While in the other paradigms, the guarantor of the system was a single organization,
in the CBD case the role of guarantor is diffused among the component suppliers and
brokers. Ultimately, end-users are responsible for guaranteeing the fitness, capability,
and appropriateness of their assembled applications.

Roles and interdependencies. ~As table 3 shows, the actors in the CBD paradigm dif-
fer dramatically from those described in the two preceding paradigms. In essence, the
developer role is assumed by external agents: component suppliers, component brokers,
and architects. The end-user and user-manager become central actors in development,
essentially removing their traditional reliance upon IS professionals. Moreover, a new
actor, the auditor, appears in table 3, sharing the role of guarantor with the other suppliers
of components [54].

The radical shifts in roles and responsibilities within the CBD paradigm place
tremendous pressure on the user. Users are not in a favorable position to compensate for
components with marginal quality or questionable reliability. To obtain high-performing
applications, it is essential that users acquire high-level resources from component sup-
pliers. The role of guarantor becomes more important in the CBD paradigm than in the
other two paradigms. Because the user is unlikely to be schooled in traditional analysis
and design techniques, the guarantor must assure that developed systems are ready to
use and can be maintained.

The interdependence among roles in the CBD paradigm is less well defined than
in the traditional life-cycle and iterative-incremental paradigms. Instead of being guided
by a formal methodology prescribed by professionally trained analysts, users engage in
commercial transactions with independent suppliers of utilities and components. This
dependency on the marketplace introduces an element of risk that the outside organiza-
tion may discontinue providing or supporting compatible components that the end user
needs. This risk is generally not present in the other two paradigms, where trained de-
velopers are available to modify software modules. The CBD paradigm, unfortunately,
leaves the user in the position of “plug and pray” that everything will fit together and
that future enhancements will be available on the market.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS 65

Although there is reciprocal interdependence in the CBD paradigm between users
and suppliers, conventional opportunities for communication and conflict resolution are
not present. Rather, this crucial relationship is governed by a contractual relationship
in which the self-interests of each party assume primacy. Users do control the devel-
opment of their own applications, and they may shop freely among suppliers to obtain
the functionality needed at a competitive price. However, beyond the economic incen-
tives regulated by the market and pricing mechanisms, no relationship is established be-
tween the parties. User-developers are motivated by organizational needs and demands,
whereas suppliers are motivated by the desire for profits made from selling their compo-
nents. Suppliers clearly benefit if they keep customers happy, so suppliers are likely to
respond if a sufficient number of customers request the same features or updates. How-
ever, when customers require components that are not widely requested, suppliers are
unlikely to provide them at a competitive price.

Conflict and its management. Although the historical conflicts between users and de-
velopers may be absent in the CBD paradigm, conflict and its management remain pri-
mary concerns. Although interdependence among parties internal to the organization
may be reduced, external interdependence has increased. Moreover, the types of re-
sources available to manage conflicts with internal parties in the traditional and iterative
paradigms are unavailable in the CBD approach. The structured methodologies that are
most characteristic of life-cycle methodologies are unavailable in component-based de-
velopment, and the trained facilitators used in the iterative-incremental methodologies
are not likely to be assigned to resolve conflicts between user-developers and suppliers.
The mechanism of market price is unlikely to regulate the potential conflicts between
user-developers and suppliers in the CBD paradigm. Thus, the relationship between
users and suppliers poses considerable potential for conflict without much recourse to
means for managing it.

Two solutions to these difficulties are likely to appear as the CBD paradigm be-
comes more firmly established. First, markets can be supplemented by closer, strategic
alliances such as those found among outsourcing partners. IS managers have already
learned that outsourcing contracts are no substitute for more secure alliances with exter-
nal providers [22,48]. User-developers should seek closer relationships with component
vendors so that the complex issues surrounding product performance, delivery, service,
maintenance, and updates may be resolved constructively.

The second development likely to emerge in the CBD paradigm is the creation
of intermediary roles. Two roles in particular should become prominent. First, given
the lack of technical training for user-developers, it may be valuable to have system
architects design the “big picture” within which users may develop their own applica-
tions [50,51]. An architect does not design system applications, but rather designs the
overall information architecture for the organization and provides the framework and
standards within which user-developers may create their own applications. This archi-
tectural framework helps to alleviate some of the risks of having untrained users perform
systems development. Second, system auditors would be helpful to verify system qual-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

66 ROBEY, TURK AND WELKE

ity and to certify the functionality and maintainability of user-developed systems [54].
System auditors may be deployed internally or hired on a contractual basis, much like
the practice of hiring financial auditors.

5. Summary and conclusion

The social implications of three IS development paradigms have been discussed
using a multidimensional framework. We distinguished among the traditional life-cycle,
the iterative-incremental, and the component-based paradigms for system development.
Each paradigm implies different actors for certain generic roles, and the interactions
among these actors may also differ. It is important to identify the actors and their inter-
dependencies because IS development is a social process, historically rife with conflicts
among actors. Because it is vital for an organization to develop useful applications of in-
formation technology, it is also vital for conflicts to be managed and resolved, regardless
of the methodology chosen for development work.

The primary implications of our analysis are summarized in table 4. Each paradigm
is associated with the same generic roles, yet these roles are played by different actors
who interact in different ways. The potential for conflict and the most likely means for
managing conflict are also identified in table 4 for each paradigm.

The traditional life-cycle paradigm implies a carefully designed social process, but
its reliance on a linear process may be ill suited for complex problem solving. The dom-
inant position of professional developers and their regulated sequential interaction with
users may suppress potential conflicts and leave end-users frustrated in their attempts to
obtain systems that meet their needs. More effective mechanisms for conflict resolution
attempt to surface latent conflicts and deal with them constructively [16,17].

The iterative-incremental paradigm emerged in response to the problems experi-
enced in the traditional life-cycle methodologies. Iterative-incremental development
brings the expertise of users and developers together, attempting to draw the best in-
formation and capabilities from each. It provides a process that is structured enough
so that development may proceed in a managed way, while providing flexibility needed
for revising documents, plans, and systems. And it attempts to make use of reusable
components as much as possible, while not being so reliant on them that systems are
determined solely by available pre-built components.

The component-based development paradigm gives the user the power to build
complete systems from components available from external sources, thereby removing
dependence upon in-house IS professionals. However, because end-users often lack for-
mal IS training, they may become significantly dependent on external component suppli-
ers and component brokers. While the CBD approach is attractive because of end-users’
ability to develop and refine applications that directly benefit them, potential conflicts
remain and need to be managed. Significantly, the CBD paradigm provides little guid-
ance beyond the operation of market mechanisms for managing potential conflicts. The
emergence of system architects and auditors as intermediaries may fill an important need
in CBD.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS

Summary of IS development paradigms.

Table 4

67

Paradigm Major roles and Potential for conflict Management of conflict
actors
Traditional Developer Low due to Regulated by formal methods
life-cycle Analyst concentration of powerin that keep roles separate and
Programmer developer role and sequential.
User sequential process.
End user Conflicts not addressed
User manager directly and may remain
Manager unresolved.
User manager
IS manager
Guarantor
IS manager
Iterative- Developer High due to equal power Regulated through direct
incremental Analyst distribution and confrontation in a team
Programmer frequency of interaction setting, facilitated by
Consultant between developers and project leader.
Integrator users.
End user Conflicts addressed as part
User manager of the development
User process and are likely to
End user be resolved.
User manager
Manager
User manager
IS manager
Guarantor
Consultant
Integrator
IS manager
Component- Developer High due to uncertainty Regulated by market.
based Component supplier about component
Component broker performance and the Conflicts addressed

Architect

End user

User manager
User

End user

User manager
Manager

User manager
Guarantor

Component supplier

Component broker

Architect

Auditor

multiple performers of
the developer and
guarantor roles.

through buyer-seller
negotiation without
recourse to cooperative
problem-solving.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

68 ROBEY, TURK AND WELKE

The emergence of the CBD paradigm presents a ripe opportunity for researchers
to investigate its social consequences. Far more research has been compiled about
the management of conflict during IS development under the traditional life-cycle and
incremental-iterative paradigms, but these findings cannot be generalized to the CBD
environment. Specifically, researchers could investigate the ways in which disagree-
ments among component suppliers, brokers, architects, and users arise and examine the
ways in which they may be successfully resolved. Recourse to the normal assurances
of fair market practices may be insufficient to protect users who seek to develop high-
performing applications on their own. We expect that intermediaries will fill important
roles in the component-based development environment, but empirical studies need to
illuminate the social dynamics and consequences of these roles.

For the practitioner, although the suggestions of this analysis surely need to be
supported with empirical evidence, our analysis does suggest caution as one moves to-
ward the CBD paradigm for developing new systems. Greatest ambiguity exists in the
guarantor role; it is not obvious to anyone who will vouch for the performance of sys-
tems constructed from components purchased from different market vendors. While we
await the emergence of intermediaries who will assume responsibility (and liability) for
performance requirements, the user will have to bear the risk inherent in component-
based development. Whether such risk is worth taking remains an empirical question
that hopefully will be stimulated by this analysis.

References

[1] R. Applebaum and M. Guttman, Transitioning to component technology, Component Strategies 1(6)
(1998) 36-44.
[2] W.G. Astley and P. Sachdeva, Structural sources of intraorganizational power: A theoretical synthesis,
Academy of Management Review 9 (1984) 104-113.
[3] H. Barki and J. Hartwick, User participation, conflict, and conflict resolution: The mediating roles of
influence, Information Systems Research 5(4) (1994) 422-438.
[4] S.R.Barley, Contextualizing conflict: Notes on the anthropology of disputes and negotiations, in: Re-
search on Negotiation in Organizations, Vol. 3, eds. M.H. Bazerman, R.J. Lewicki and B.H. Sheppard
(JAI Press, 1991) pp. 165-199.
[5] R.A. Baron, Negative effects of destructive criticism: Impact on conflict, self-efficacy, and task per-
formance, in: Managing Conflict: An Interdisciplinary Approach, ed. M.A. Rahim (Praeger, 1989).
[6] C.M. Beath, Supporting the information technology champion, MIS Quarterly 15(3) (1991) 355-372.
[71 C.M. Beath and W.J. Orlikowski, The contradictory structure of systems development methodologies:
Deconstructing the IS-user relationship in information engineering, Information Systems Research
5(4) (1994) 350-377.
[8] B. Boar, Application Prototyping: A Requirements Definition Strategy for the 80s (Wiley, 1984).
[9]1 B. Boehm, A spiral model of software development and enhancement, IEEE Computer 21(5) (1988)
61-72.
[10] R.J. Boland, Jr., The process and product of system design, Management Science 24(9) (1978) 887—
898.
[11] G. Booch, Object-Oriented Analysis and Design with Applications (Benjamin/Cummings, 1994).
[12] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide (Addison-
Wesley, 1999).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

SOFTWARE DEVELOPMENT PARADIGMS 69

[13] R.P. Bostrom, Successful application of communication techniques to improve the systems develop-
ment process, Information & Management 16(5) (1989) 279-295.

[14] C.W. Churchman, The Design of Inquiring Systems: Basic Concepts of Systems and Organizations
(Basic Books, 1971).

[15] A.T. Cobb, An episodic model of power: Toward an integration of theory and research, Academy of
Management Review 9 (1984) 482-493.

[16] R.A. Cosier and D.R. Dalton, Positive effects of conflict: A field assessment, International Journal of
Conflict Management 1 (1990) 81-92.

[17] R.A. Cosier and C.R. Schwenk, Agreement and thinking alike: Ingredients for poor decisions, Acad-
emy of Management Executive 4(1) (1990) 69-74.

[18] B. DeBrabander and G. Thiers, Successful information system development in relation to situational
factors which affect effective communication between MIS-users and EDP-specialists, Management
Science 30(2) (1984) 137-155.

[19] T. DeMarco, Structured Systems Analysis and System Specification (Prentice-Hall, 1979).

[20] M.E. Fayad, W.-T. Tsai and M.L. Fulghum, Transition to object-oriented software development, Com-
munications of the ACM 39(2) (1996) 108-121.

[21] C.R.Franz and D. Robey, An investigation of user-led system design: Rational and political perspec-
tives, Communications of the ACM 27(12) (1984) 1202-1209.

[22] J.C. Henderson, Plugging into strategic partnerships: The critical IS connection, Sloan Management
Review 31(3) (1991) 7-18.

[23] R. Hirschheim and H. Klein, Four paradigms of information systems development, Communications
of the ACM 32(10) (1989) 1199-1216.

[24] R. Hirschheim, H. Klein and M. Newman, Information systems development as social action, Omega
19(6) (1991) 587-608.

[25] J.E. Hunton and J.D. Beeler, Effects of user participation in systems development: A longitudinal
field experiment, MIS Quarterly 21(4) (1997) 359-388.

[26] IEEE Software 15(5) (1998), Special focus on component-based software engineering.

[27] T.Jell, CUC96: Component Based Software Engineering (SIGS Books, 1998).

[28] R. Kraut, S. Dumais and S. Koch, Computerization, productivity, and quality of work-life, Commu-
nications of the ACM 32(2) (1989) 220-238.

[29] M. Laitkorpi and A. Jaaksi, Extending the object-oriented software process with component oriented
design, JOOP 12(1) (1999) 41-50, 67.

[30] R.J. Lewicki, S.E. Weiss and D. Lewin, Models of conflict, negotiation and third party intervention:
A review and synthesis, Journal of Organizational Behavior 13(3) (1992) 209-252.

[31] J. Martin, Information Engineering, Book I: Introduction (Prentice-Hall, 1989).

[32] J. Martin, Information Engineering, Book II: Planning and Analysis (Prentice-Hall, 1990).

[33] J. Martin, Information Engineering, Book IlI: Design and Construction, (Prentice-Hall, 1990).

[34] R.O. Mason and LI Mitroff, A program for research on management information systems, Manage-
ment Science 19(5) (1973) 475-487.

[35] J.D.McGregor and T.D. Korson, Integrated object-oriented testing and development processes, Com-
munications of the ACM 37(9) (1994) 59-77.

[36] M. Newman and F. Noble, User involvement as an interaction process: A case study, Information
Systems Research 1(1) (1990) 89-113.

[37] M. Newman and D. Robey, A social process model of user-analyst relationships, MIS Quarterly 16(2)
(1992) 249-266.

[38] O. Nierstrasz, S. Gibbs and D. Tsichritzis, Component-oriented software development, Communica-
tions of the ACM 35(9) (1992) 160-165.

[39] L.R. Pondy, Organizational conflict: Concepts and models, Administrative Science Quarterly 12(2)
(1967) 296-320.

[40] R. Pressman, Software Engineering: A Practitioner’s Approach (McGraw-Hill, 1997).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

70 ROBEY, TURK AND WELKE

[41] D. Robey and D.L. Farrow, User involvement in information systems development: A conflict model
and empirical test, Management Science 28(1) (1982) 73-85.

[42] D.Robey, D.L. Farrow and C.R. Franz, Group process and conflict during system development, Man-
agement Science 35(10) (1989) 1172-1191.

[43] D. Robey, L.A. Smith and L.R. Vijayasarathy, Perceptions of conflict and success in information
systems development projects, Journal of Management Information Systems 10(1) (1993) 123-139.

[44] D. Robey and M. Newman, Sequential patterns in information systems development: An application
of a social process model, ACM Transactions on Information Systems 14(1) (1996) 30-63.

[45] D. Robey and M.-C. Boudreau, Accounting for the contradictory organizational consequences of in-
formation technology: Theoretical directions and methodological implications, Information Systems
Research 10(2) (1999) 167-185.

[46] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling and
Design (Prentice-Hall, 1991).

[47] R. Sabherwal and D. Robey, An empirical taxonomy of implementation processes based on sequences
of events in information system development, Organizational Science 4(4) (1993) 548-576.

[48] R. Sabherwal and J.J. Elam, Overcoming the problems in information systems development by build-
ing and sustaining commitment, Accounting, Management & Information Technologies 5(3/4) (1996)
283-309.

[49] G. Salaway, An organizational learning approach to information systems development, MIS Quarterly
11(2) (1987) 244-264.

[50] N.F. Simenson, The architect: Roles and responsibilities, American Programmer 10(7) (1997) 14-17.

[51] D.F Sittig, S. Sengupta, H. Al-Daig, T.H. Payne and P. Pincetl, The role of the information architect
at king faisal specialist hospital and research center, in: Proceedings of the 19th Annual Symposium
on Computer Applications in Health Care (1995) pp. 756-760.

[52] J. Voas, Maintaining component-based systems, IEEE Software 15(4) (1998) 22-27.

[53] D.B. Walz, J.J. Elam and B. Curtis, Inside a software design team: Knowledge acquisition, sharing,
and integration, Communications of the ACM 36(10) (1993) 63-77.

[54] R. Welke, The shifting software development paradigm, Data Base 25(4) (1994) 9-16.

[55] E. Yourdon, Modern Structured Analysis (Prentice-Hall, 1989).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyyww.manaraa.com

